

Simulation and Bisimulation

Dr. Liam O'Connor CSE, UNSW (for now) Term 1 2020

Model Equivalence

Let A and B be Kripke structures.

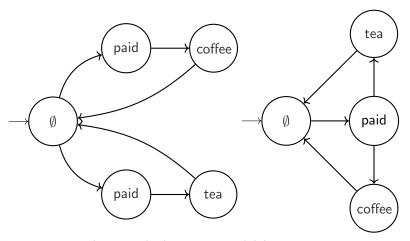
Question

When does $A \models \varphi \Leftrightarrow B \models \varphi$ for all LTL formulae φ ? When A and B have the same behaviours. Why?

Liam: prove it on the board

This is called *infinite completed trace equivalence*.

Limitations of Traces



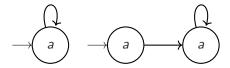
Traces cannot distinguish these two models!

Model Equivalence

Question

When does $A \models \varphi \Leftrightarrow B \models \varphi$ for all CTL formulae φ ? hmm...

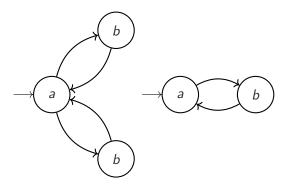
Is it (only) when A = B (graph isomorphism)?



Nope!

Tree Equivalence?

Is it when the two automata have the same computation tree?



Also no!

Bisimulations

Definition

A (strong) *bisimulation* between two automata A and B is defined as a relation $\mathcal{R} \subseteq Q_A \times Q_B$ which satisfies:

- If $s \mathcal{R} t$ then $L_A(s) = L_B(t)$
- If $s \mathcal{R} t$ and $s \xrightarrow{a} s'$ (with $a \in \Sigma_A, s' \in Q_A$) then there exists a $t' \in Q_B$ such that $t \xrightarrow{a} t'$ and $s' \mathcal{R} t'$.
- If $s \mathcal{R} t$ and $t \xrightarrow{a} t'$ (with $a \in \Sigma_B, t' \in Q_B$) then there exists a $s' \in Q_A$ such that $s \xrightarrow{a} s'$ and $s' \mathcal{R} t'$.

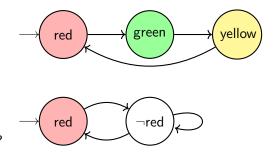
Two automata are *bisimulation equivalent* or *bisimilar* iff there exists a bisimulation between their initial states.

Let's find bisimulations for the previous examples.

Result

For two finitely-branching automata A and B, $A \models \varphi \Leftrightarrow B \models \varphi$ for all CTL formulae φ iff they are *bisimilar*.

Simulation



Are these bisimilar?

No, but one simulates the other.

Simulation Relations

Definition

A *simulation* of an automaton C by an automaton A is defined as a relation $S \subseteq Q_C \times Q_A$ which satisfies:

- If $s \mathcal{S} t$ then $L_C(s) \cap L_A = L_A(t)$
- If $s \ \mathcal{S} \ t$ and $s \xrightarrow{a} s'$ (with $a \in \Sigma_C, s' \in Q_C$) then there exists a $t' \in Q_A$ such that $t \xrightarrow{a} t'$ and $s' \ \mathcal{R} \ t'$.

The automaton A is an *abstraction* of the concrete automaton C iff a A simulates C. This is sometimes written $A \subseteq C$.

Abstraction and Traces

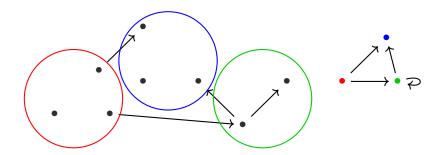
If $A \sqsubseteq C$, then every trace of C restricted to L_A is a trace of A. $\sigma_1 \sigma_2 \sigma_3 \cdots \in \mathsf{Traces}(C)$

$$\Rightarrow (\sigma_1 \cap L_A)(\sigma_2 \cap L_A)(\sigma_3 \cap L_A) \cdots \in \mathsf{Traces}(A)$$

Essential Property of Simulations

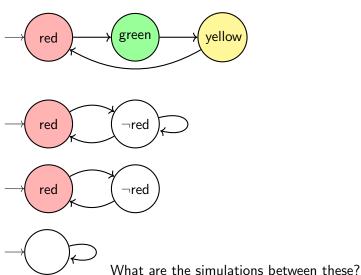
Let \mathcal{A} be a simulation relation, showing that $X \sqsubseteq Y$. Then for every run $\rho_1\rho_2\rho_3\cdots\in Y$ is a run of X by applying the simulation relation as an *abstraction mapping*:

$$\mathcal{A}(\rho_1)\mathcal{A}(\rho_2)\mathcal{A}(\rho_3)\cdots\in X$$



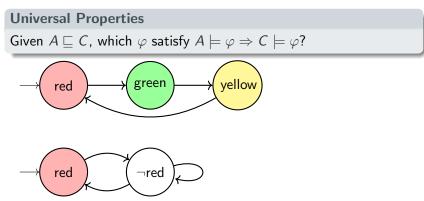
g

Comparing Automata



Reducing State Space

We want abstraction to shrink the state space for model checking. To do this, we need a guarantee that any property we prove about an abstraction applies just as well to the concrete model.



¬AG AF red? Doesn't work!

AG AF ¬red? Works!

Universal CTL

Negation Normal Form

 φ is in negation normal form (NNF), written $\hat{\varphi}$, if all negations are applied only to atomic props. All formulae have a NNF equivalent.

ACTL

 φ is a formula in ACTL, the *Universal CTL*, iff its *negation normal* form, $\hat{\varphi}$, does not contain **E**.

Example

- AGp
- AG AFp
- EFp Nope!

Negation Normal Form

$$\begin{array}{rcl}
\neg \mathsf{AF}\varphi & \equiv & \mathsf{EG}\neg\varphi \\
\neg \mathsf{EF}\varphi & \equiv & \mathsf{AG}\neg\varphi \\
\neg \mathsf{AG}\varphi & \equiv & \mathsf{EF}\neg\varphi \\
\neg \mathsf{EG}\varphi & \equiv & \mathsf{AF}\neg\varphi \\
\neg \mathsf{AX}\varphi & \equiv & \mathsf{EX}\neg\varphi \\
\neg \mathsf{EX}\varphi & \equiv & \mathsf{AX}\neg\varphi \\
\neg \mathsf{E}(\varphi \ \mathsf{U} \ \psi) & \equiv & \mathsf{A}(\neg\varphi \ \mathsf{R} \ \neg\psi) \\
\neg \mathsf{A}(\varphi \ \mathsf{U} \ \psi) & \equiv & \mathsf{E}(\neg\varphi \ \mathsf{R} \ \neg\psi)
\end{array}$$

Release Operator

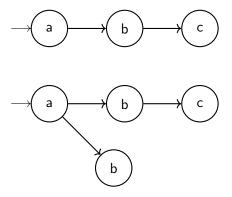
The temporal operator φ **R** ψ says that ψ will not become false unless φ happens first.

$$\sigma \models \varphi \ \mathbf{R} \ \psi \quad \Leftrightarrow \quad \forall n \geq 0. \ (\forall 0 \leq k < n. \ \sigma|_k \not\models \varphi) \Rightarrow \sigma|_n \models \psi$$

A and E variants in CTL follow the usual pattern.

Bisimulation and simulation

Suppose that $A \sqsubseteq B$ and $B \sqsubseteq A$. Does that mean A is bisimilar to B?



Nope! This is another equivalence called *simulation equivalence*. Because of the abstraction result, ACTL is the logic that characterises simulation equivalence.

The Linear-time Branching-time Spectrum

Coarseness of Equivalences

- Graph isomorphism is finer (distinguishes more models) in than bisimilarity.
- Bisimilarity is finer than simulation equivalence.
- Bisimilarity is finer that completed infinite trace equivalence.
- Partial trace equivalence (sets of finite-length traces) is coarser than all of the above.

There are many, many more equivalences.

Rob van Glabbeek categorised all of these equivalences and more into the *linear-time branching-time spectrum*, which is a major focus of his course at this university, COMP6752.

Bibliography

- Baier/Katoen, Sections 7.1 (parts), 7.2 (parts), 7.4, 7.5, 7,6,
 7.7
- Rob van Glabbeek, The Linear-Time Branching-Time
 Spectrum I, Handbook of Process Algebra p. 3-99, Elsevier.
- Rob van Glabbeek, COMP6752 course notes.